0  447251  447259  447265  447269  447275  447277  447281  447287  447289  447295  447301  447305  447307  447311  447317  447319  447325  447329  447331  447335  447337  447341  447343  447345  447346  447347  447348 

19.★(本小题满分10分)已知数列{an}、{bn}都是无穷等差数列,其中a1=3,b1=2,b2a2a3的等差中项,且.求极限的值.

分析 首先需求出anbn的表达式,以确定所求极限的表达式,为此,关键在于求出两个数列的公差,“b2a2a3的等差中项”已给出一个等量关系,“anbn之比的极限为”又给出了另一个等量关系,故可考虑先设出公差用二元方程组求解.

解 设{an}、{bn}的公差分别为d1d2,

∵2b2=a2+a3,即2(2+d2)=(3+d1)+(3+2d1),

∴2d2-3d1=2.①   2分

d2=2d1,②    4分

联立①②解得d1=2,d2=4.

an=a1+(n-1)d1=3+(n-1)·2=2n+1,

bn=b1+(n-1)d2=2+(n-1)·4=4n-2.   6分

10分

试题详情

18.(本小题满分10分)已知数列{an}、{bn},其中an=1+3+5+…+(2n+1),bn=2n+4(n≥5),试问是否存在这样的自然数n,使得anbn成立?

分析 对n赋值后,比较几对anbn的大小,可作出合理猜测,再用数学归纳法予以证明.

an=1+3+5+…+(2n+1)=(n+1)2,

n=5时,a5=36,b5=25+4=36,此时a5=b5;

n=6时, a6=49,b6=26+4=68,此时a6<b6;

n=7时,a7=64,b7=27+4=132,此时a7<b7;

n=8时,a8=81,b8=28+4=260,此时a8<b8.

猜想:当n≥6时,有an<bn.    3分

下面用数学归纳法证明上述猜想.

①当n=6时,显然不等式成立,∴n=6时,不等式an<bn成立;

②假设当n=k(k≥6)时,不等式成立,即ak<bk,也即(k+1)2<2k+4;当n=k+1时,bk+1=2k+1+4=2(2k+4)-4>2(k+1)2-4=2k2+4k-2,

而(2k2+4k-2)-(k+2)2=k2-6>0(∵k≥6,∴k2>6),

即2k2+4k-2>(k+2)2=[(k+1)+1]2.

由不等式的传递性,知bk+1>[(k+1)+1]2=ak+1.

∴当n=k+1时,不等式也成立.   8分

由①②可知,对一切n∈N,且n≥6,都有an<bn.

综上所述,可知只有当n=5时,an=bn;当n≥6时,anbn.因此存在使anbn成立的自然数n.

10分

试题详情

17.(本小题满分8分)某校有教职工150人,为了丰富教工的课余生活,每天定时开放健身房和娱乐室.据调查统计,每次去健身房的人有10%下次去娱乐室,则在娱乐室的人有20%下次去健身房.请问,随着时间的推移,去健身房的人数能否趋于稳定?

分析 本题考查用数列的递推公式求通项及数列的极限.

解 设第n次去健身房的人数为an,去娱乐室的人数为bn,则an+bn=150,       2分

an=an-1+bn-1=an-1+(150-an-1)=an-1+30,

an=an-1+30.         4分

an-100=(an-1-100).于是an-100=(a1-100)·()n-1,即an=100+()n-1·(a1-100).  6分

an=100.故随着时间的推移,去健身房的人数稳定在100人左右.       8分

试题详情


扫码下载作业精灵
同步练习册答案
网站地图 双色球黑龙江时时彩 双色球安徽快3 澳门网上赌场登入
太阳城游戏下载 申博微信支付充值 申博官网注册主页 PT电子游戏官网
彩88PC蛋蛋 亚美游戏 97棋牌 彩票828娱乐登陆
彩13北京赛车pk10 彩13新加坡2分彩 双色球香港分分彩 彩13台湾宾果
彩13河南快3 彩13澳洲3分彩 双色球江西11选5 双色球江苏快3
XSB2222.COM 191sj.com 717sj.com 158jbs.com 898jbs.com
500xsb.com S6183.COM 88TGP.COM 133DC.COM 179SUN.COM
537SUN.COM 777TGP.COM 358PT.COM 687XTD.COM 82ib.com
888sbsg.com 1112998.COM XSB868.COM 548XTD.COM 66sbsun.com